Cite
Zou, Andy, et al. Representation Engineering: A Top-Down Approach to AI Transparency. arXiv:2310.01405, arXiv, 10 Oct. 2023. arXiv.org, https://doi.org/10.48550/arXiv.2310.01405.
Metadata
Title: Representation Engineering: A Top-Down Approach to AI Transparency Authors: Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, J. Zico Kolter, Dan Hendrycks Cite key: zou2023
Links
Abstract
In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.
Notes
From Obsidian
(As notes and annotations from Zotero are one-way synced, this section include a link to another note within Obsidian to host further notes)
Representation-Engineering---A-Top-Down-Approach-to-AI-Transparency
From Zotero
(one-way sync from Zotero)
Annotations
Highlighting colour codes
Link to original
- Note: highlights for quicker reading or comments stemmed from reading the paper but might not be too related to the paper
- External Insight: Insights from other works but was mentioned in the paper
- Question/Critic: questions or comments on the content of paper
- Claim: what the paper claims to have found/achieved
- Finding: new knowledge presented by the paper
- Important: anything interesting enough (findings, insights, ideas, etc.) that’s worth remembering
From Zotero
(one-way sync from Zotero)