signed-integer
2’s complement
0 1 2 3 -4 -3 -2 -1 
------------------>
- naming rationale: for n-bit integer, sum (x + -x)  = 2^n, which is all 0s in n-bit.
- -xis a complement of- xwith respect to- 2^n
 
- representation: sX = -s * 2^(n - 1) + X
- first bit represents -2^(n - 1)(s)
- all other bits are normal binary representation (X)
 
- conversion: 0000 1011
- flip all bits 1111 0100
- then add 1 1111 0101
 
  0000 1011 = 15
  1111 0101 = -15 = -2^7 + 117 (=111 0101)
-----------
1|0000 0000 = 0 (= 2^8 in unsigned)
- Pros:
- arithmetic behaves normally (since there’s only 1 zero)