Retrieval
SemanticRetriever ¶
Bases: BaseModel
SemanticRetriever class for retrieving documents based on embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding_model |
Any
|
The embedding model used to encode the corpus. |
required |
vector_db |
Collection
|
The Chroma vector database. |
required |
Source code in docqa/core/retrieval.py
process ¶
Process the given query to retrieve the top-k results from the vector database.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
str
|
The query string. |
required |
top_k |
int
|
The number of results to retrieve. |
required |
metadata_filter |
dict | None
|
A dictionary specifying metadata filters. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
list[dict]
|
list[dict]: The list of retrieved results. |